

Transparent Conducting Coatings for Cost Effective Photovoltaics Manufactured Using Atomic Layer Deposition

Photovoltaics

Jeffrey Elam

Argonne National Laboratory jelam@anl.gov
May 26, 2010

Overview

Timeline

- Project start: Feb 18, 2010
- Project end: Feb 28, 2013
- Percent complete: 8%

Budget

- Total project funding
 - DOE share: \$945K
 - Industrial cost share:\$450K
- Funding received in FY09: \$0
- Funding for FY10: \$945K

Barriers

- Low temperature process needed
- Maintain electrical isolation
- Achieve high materials performance
- Cost-efficiency

Partners

- Project lead: Argonne
- Industrial Partners:
 - Solasta, Inc.
 - SAFC Hitech

Challenges, Barriers or Problems

- A new cross-cutting technology is required to apply transparent conducting oxide (TCO) coatings onto nextgeneration photovoltaic devices. This technology must yield high performance TCOs at low process temperatures, and must be cost-effective.
- This new TCO coating technology will be applicable to a
 wide range of PV devices under development and in
 production in the US including nanocoaxial solar cells,
 dye-sensitized solar cells, nanostructured thin film solar
 cells, amorphous silicon solar cells, and multijuntion
 concentrated PV devices.

Relevance

- Overall Objective: Lower the manufacturing cost (\$/W) of photovoltaic devices by developing a new cross-cutting technology for the atomic layer deposition (ALD) of transparent conducting coatings to benefit a broad range of solar cells.
- Task 1: Develop a low-temperature ALD process for depositing indium-tin oxide (ITO) compatible with the Solasta nanocoaxial silicon PV manufacturing process
- Task 2: Develop an ALD process for depositing alternative transparent conducting coating using little or no indium.
- Task 3: Scale-up ALD transparent conducting coating process.

Approach

- <u>Task 1 Go/No-Go Decision</u>: Performance of PV devices fabricated using ALD ITO coatings must be comparable or superior to those fabricated using conventional coatings.
- <u>Task 2 Go/No-Go Decision</u>: Performance of PV devices using alternative transparent conducting coatings must be superior to those using ITO coatings.
- <u>Task 3 Go/No-Go Decision</u>: Performance of scaled-up PV devices fabricated using ALD ITO coatings must be comparable or superior to those fabricated using conventional coatings.

Approach

Atomic Layer Deposition (ALD):

Thin film coating method using alternating, selflimiting chemical reactions between gaseous precursors and a surface to deposit material in an atomic layer-by-layer fashion.

ALD Thin Film Materials

Many materials by ALD

• Self-limiting surface reactions

Conformal coatings over complex surfaces

ALD Transparent Conducting Oxides (TCOs)

TCO Material	Resistivity (Ohm cm)	Transparency (%)	Sheet Resistance (Ohm)
Indium-tin oxide (ITO)	1.5x10 ⁻⁴	90	30
Aluminum–zinc oxide (AZO)	1.0x10 ⁻³	88	10
Antimony-tin oxide (ATO)	2.0x10 ⁻³	90	100

PV Technologies for ALD TCOs

Nanocoaxial silicon

Folded thin-film

Interdigitated DSSC

Collaborations

- Solasta, Inc.
 - Cost-sharing partner
 - Manufacture and evaluate nanocoaxial PVs utilizing the ALD technology developed in this program
- SAFC Hitech
 - Cost-sharing partner
 - Synthesize and characterize ALD precursors for use in TCO deposition

Accomplishments / Progress / Results

New Process for Indium Oxide ALD

- Dramatic increase in mobility at 140°C
- Dramatic decrease in carriers at 140°C

- amorphous to crystalline phase transition at 140°C
- Crystalline In₂O₃ has higher mobility, fewer defects
- Low temperature process, good materials properties

Budget Status and Potential for Expansion

- Project funding:
 - DOE share: \$945K
 - Industrial cost share:\$450K
- Project is on schedule and on budget

Future Plans (FY 2011 and beyond)

- FY10-11: Develop a low-temperature ALD process for depositing indium-tin oxide (ITO) compatible with the Solasta nanocoaxial silicon PV manufacturing process
- FY11-12: Develop an ALD process for depositing an alternative transparent conducting coating using little or no indium compatible with the Solasta manufacturing process.
- FY12-13: Scale-up ALD transparent conducting coating process.

Mandatory Summary Slide

<u>Project Objective</u>: Lower the manufacturing cost of photovoltaic devices by developing a new cross-cutting technology for the atomic layer deposition (ALD) of transparent conducting coatings to benefit a broad range of solar cells.

Partners: Argonne (lead), Solasta Inc., SAFC Hitech

<u>Timeline</u>: 2/18/10 – 2/28/13

Budget: \$945K (DOE), \$450K (industry cost-share)

Accomplishments: Low temperature In₂O₃ ALD process developed

Status: On schedule, on budget